Optimal transit routing with partial online information

Document Type

Journal Article

Publication Date


Subject Area

planning - signage/information, planning - route design, planning - network design, infrastructure - stop


Routing, Hyperpath, Partial information, Attractive set, Cycles


This paper studies the routing strategy in a transit network with partial online information at stops. By partial online information, we mean that the arrival time of the incoming transit vehicles is available for a subset of the lines serving a stop. To cope with the partial information assumption, a new routing strategy is proposed and closed form formulae for computing expected waiting times and line boarding probabilities are derived. The proposed strategy unifies existing hyperpath-based transit route choice models that assume either no information or full information. Like many existing models, it ensures optimality when all information is available or the headway is exponentially distributed. The problem of determining the attractive set is discussed for each of the three information cases. In particular, a new heuristic algorithm is developed to generate the attractive set in the partial information case, which will always yield a solution no worse than that obtained without any information. The paper also reveals that, when information is available, an optimal hyperpath may contain cycles. Accordingly, the cause of such cycles is analyzed, and a sufficient condition that excludes cycles from optimal hyperpaths is proposed. Finally, numerical experiments are conducted to illustrate the impact of information availability on expected travel times and transit line load distributions. Among other findings, the results suggest that it is more useful to have information on faster lines than on slower lines.


Permission to publish the abstract has been given by Elsevier, copyright remains with them.


Transportation Research Part B Home Page: