Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network

Document Type

Journal Article

Publication Date


Subject Area

place - asia, place - urban, technology - passenger information, ridership - behaviour, ridership - modelling


Route choice behavior, Transit assignment, Smartcard data, Transit fare system, A trajectory of the chosen path


One of the major objectives of this study is to provide more realistic and accurate results related to transit passenger’s route choice behavior by using population data of revealed preference from smartcard transaction records. The smartcard data of the Seoul city provides both boarding and alighting location and time, which can make possible to trace each passenger’s actually used path trajectory with close to 100% market penetration of smartcard usage. This study built an abstract transit network with representative nodes by aggregating all near-by bus stops within walkable distance and with abstract paths by aggregating lines for a specific OD pair that run the same trajectory links by same transit modes. This complex and huge-scale transit network allowed to analyze the route choice behavior of transit passengers in a multimodal transit system that could not be found from the data of relatively small-size cities. This study selected OD pairs which had two or more alternative paths in order to analyze choice behavior requiring a plural alternative choice set. The number of the selected OD pairs are 124,393 pairs that are 33.9% of whole OD pairs that has two or more trip records. The calibration result showed that it is good statistically and logically to include the six explanatory variables in the utility function of the multinomial Logit model. Those are in-vehicle travel time, out-of-vehicle travel time, transfer penalty index, travel time reliability measure, and path circuity index.


Permission to publish the abstract has been given by SpringerLink, copyright remains with them.