Using computer vision and machine learning to identify bus safety risk factors

Document Type

Journal Article

Publication Date


Subject Area

place - urban, mode - bus, mode - pedestrian, infrastructure - stop, land use - impacts, planning - safety/accidents


Bus safety, Pedestrian behaviour, Video analytics, Crash modeling


In road safety research, bus crashes are particularly noteworthy because of the large number of bus passengers involved and the challenge that it puts to the road network (with the closure of multiple lanes or entire roads for hours) and the public health care system (with multiple injuries that need to be dispatched to public hospitals within a short time). The significance of improving bus safety is high in cities heavily relying on buses as a major means of public transport. The recent paradigm shifts of road design from primarily vehicle-oriented to people-oriented urge us to examine street and pedestrian behavioural factors more closely. Notably, the street environment is highly dynamic, corresponding to different times of the day. To fill this research gap, this study leverages a rich dataset - video data from bus dashcam footage - to identify some high-risk factors for estimating the frequency of bus crashes. This research applies deep learning models and computer vision techniques and constructs a series of behavioural and street factors: pedestrian exposure factors, pedestrian jaywalking, bus stop crowding, sidewalk railing, and sharp turning locations. Important risk factors are identified, and future planning interventions are suggested. In particular, road safety administrations need to devote more efforts to improve bus safety along streets with a high volume of pedestrians, recognise the importance of protection railing in protecting pedestrians during serious bus crashes, and take measures to ease bus stop crowding to prevent slight bus injuries.


Permission to publish the abstract has been given by Elsevier, copyright remains with them.


Accident Analysis and Prevention Home Page: