Parallel Kalman filter group integrated particle filter method for the train nonlinear operational status high-precision estimation under non-Gaussian environment

Document Type

Journal Article

Publication Date


Subject Area

mode - rail, operations - reliability


train, operation


For the problem of multi-mode state estimation in actual train operation, this paper proposes a nonlinear non-gaussian high-precision parallel Kalman filter group (NN-HEKFG) integrated Particle Filter. A multi-model Gaussian decomposition of the probability density function for state equations and measurement equations is performed, and each local state model is represented by a multi-dimensional high-order polynomial to establish the expanded dimensional state model. Then, by updating the mean and variance of the local state expanded dimensional model and in turn solving the particle filtering posterior probability density distribution function, the global estimation results are obtained. In reducing the number of Gaussian terms, a new parameter reduction criterion is established, which can effectively carry out the re-identification of parameters such as weights and means, so as to avoid the problem of parameter explosion. The superiority of NN-HEKFG over particle filters and Gaussian sum filters and its effectiveness for train running state estimation are verified by simulating the multi-model running state of trains.


Permission to publish the abstract has been given by Elsevier, copyright remains with them.


Accident Analysis and Prevention Home Page: