A new offline optimization approach for designing a fuel cell hybrid bus

Document Type

Journal Article

Publication Date


Subject Area

economics - capital costs, economics - economies of scale, mode - bus, place - europe, place - urban, technology - alternative fuels, economics


Energy management strategy, Fuel cell, Optimization, Real driving cycles, Urban bus design


In this study a hydrogen powered fuel cell hybrid bus is optimized in terms of the powertrain components and in terms of the energy management strategy. Firstly the vehicle is optimized aiming to minimize the cost of its powertrain components, in an official driving cycle. The optimization variables in powertrain component design are different models and sizes of fuel cells, of electric motors and controllers, and batteries. After the component design, an energy management strategy (EMS) optimization is performed in the official driving cycle and in two real measured driving cycles, aiming to minimize the fuel consumption. The EMS optimization is based on the control of the battery’s state-of-charge. The real driving cycles are representative of bus driving in urban routes within Lisbon and Oporto Portuguese cities. A real-coded genetic algorithm is developed to perform the optimization, and linked with the vehicle simulation software ADVISOR. The trade-off between cost increase and fuel consumption reduction is discussed in the lifetime of the designed bus and compared to a conventional diesel bus. Although the cost of the optimized hybrid powertrain (62,230 €) achieves 9 times the cost of a conventional diesel bus, the improved efficiency of such powertrain achieved 36% and 34% of lower energy consumption for the real driving cycles, OportoDC and LisbonDC, which can originate savings of around 0.43 €/km and 0.37 €/km respectively. The optimization methodology presented in this work, aside being an offline method, demonstrated great improvements in performance and energy consumption in real driving cycles, and can be a great advantage in the design of a hybrid vehicle.


Permission to publish the abstract has been given by Elsevier, copyright remains with them.


Transportation Research Part C Home Page: