Measuring vulnerability of urban metro network from line operation perspective

Document Type

Journal Article

Publication Date


Subject Area

place - asia, place - urban, mode - subway/metro, operations - performance, operations - capacity, ridership - commuting, planning - service improvement


Metro network, Vulnerability, Disruption, Passenger flow, Line operation


Urban metro systems are subject to recurring service disruption for various reasons, such as mechanical or electrical failure, adverse weather, or other accidents. In recent years, studies on metro networks have attracted increasing attention because the consequence of operational accidents is barely affordable. This study proposes to measure the metro network vulnerability from the perspective of line operation by taking the Shanghai metro network as a case study. As opposed to previous studies that focused largely on disruption of important nodes or links, this study investigates the disruption from the line operation perspective. Betweenness centrality (BC) and passenger betweenness centrality (PBC), number of missed trips, weighted average path length, and weighted global efficiency were analyzed considering relative disruption probability of each line. Passenger flow distribution and re-distribution were simulated for different disruption scenarios based on all-or-nothing assignment rule. The results indicate that the metro lines carrying a large number of passengers generally have a significant impact on the network vulnerability. The lines with circular topological form also have a significant influence on passenger flow re-distribution in case of a disruption. The results of this study provide suggestions on metro system administration for potential improvement of the performance of operation, and passengers may meanwhile have an improved alternate plan for their commute trip when a disruption occurs.


Permission to publish the abstract has been given by Elsevier, copyright remains with them.


Transportation Research Part A Home Page: