Field Evaluation of Connected Vehicle-Based Transit Signal Priority Control under Two Different Signal Plans

Document Type

Journal Article

Publication Date


Subject Area

place - north america, place - urban, mode - bus, infrastructure - bus/tram priority, infrastructure - traffic signals, operations - performance, operations - reliability, operations - scheduling


connected vehicle (CV), transit signal priority (TSP), performance, bus reliability


In 2017, a connected vehicle (CV) corridor utilizing dedicated short-range communication (DSRC) technology was built along Redwood Road, Salt Lake City, Utah. One main goal of this CV corridor is to implement transit signal priority (TSP) when the bus is behind its published schedule by a certain threshold. With the data generated by the transit vehicles, transmitted through the DSRC system, logged by traffic signal controller, and coupled with the Utah Transit Authority (UTA) data from transit operation system, some performance data of the TSP can be analyzed including TSP requested, TSP served, bus reliability, bus travel time, and bus running time. For providing better signal coordination to buses, the signal plan for this CV corridor underwent retiming in October 2018. This research aims to compare the TSP performance before and after the signal retiming. The field data of August, September, November, and December in 2018 were selected to perform this evaluation. Results show that the TSP served rate after signal retiming is 35.29%, which is higher than that of 33.12% before signal retiming. In addition, compared with the signal plan before October, bus reliability northbound and southbound on the CV corridor was improved by 2.4% and 1.47%, respectively; bus travel time and bus running time were reduced as well.


Permission to publish the abstract has been given by SAGE, copyright remains with them.