Conditional forecasting of bus travel time and passenger occupancy with Bayesian Markov regime-switching vector autoregression

Document Type

Journal Article

Publication Date

2025

Subject Area

mode - bus, ridership - forecasting

Keywords

Bayesian Markov regime-switching model, Vector autoregressive model, Probabilistic forecasting, Bus travel time, Passenger occupancy

Abstract

Accurate forecasting of bus travel time and passenger occupancy with uncertainty is essential for both travelers and transit agencies/operators. However, existing approaches to forecasting bus travel time and passenger occupancy mainly rely on deterministic models, providing only point estimates. In this paper, we develop a Bayesian Markov regime-switching vector autoregressive model to jointly forecast both bus travel time and passenger occupancy with uncertainty. The proposed approach naturally captures the intricate interactions among adjacent buses and adapts to the multimodality and skewness of real-world bus travel time and passenger occupancy observations. We develop an efficient Markov chain Monte Carlo (MCMC) sampling algorithm to approximate the resultant joint posterior distribution of the parameter vector. With this framework, the estimation of downstream bus travel time and passenger occupancy is transformed into a multivariate time series forecasting problem conditional on partially observed outcomes. Experimental validation using real-world data demonstrates the superiority of our proposed model in terms of both predictive means and uncertainty quantification compared to the Bayesian Gaussian mixture model.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Transportation Research Part B Home Page:

http://www.sciencedirect.com/science/journal/01912615

Share

COinS