A framework to integrate mode choice in the design of mobility-on-demand systems

Document Type

Journal Article

Publication Date

2019

Subject Area

mode - demand responsive transit, mode - taxi, mode - bus, mode - rail, planning - service level, ridership - mode choice, ridership - demand

Keywords

Mode choice, Mobility-on-demand, Bayesian optimization

Abstract

Mobility-on-Demand (MoD) systems are generally designed and analyzed for a fixed and exogenous demand, but such frameworks fail to answer questions about the impact of these services on the urban transportation system, such as the effect of induced demand and the implications for transit ridership. In this study, we propose a unified framework to design, optimize and analyze MoD operations within a multimodal transportation system where the demand for a travel mode is a function of its level of service. An application of Bayesian optimization (BO) to derive the optimal supply-side MoD parameters (e.g., fleet size and fare) is also illustrated. The proposed framework is calibrated using the taxi demand data in Manhattan, New York. Travel demand is served by public transit and MoD services of varying passenger capacities (1, 4 and 10), and passengers are predicted to choose travel modes according to a mode choice model. This choice model is estimated using stated preference data collected in New York City. The convergence of the multimodal supply-demand system and the superiority of the BO-based optimization method over earlier approaches are established through numerical experiments. We finally consider a policy intervention where the government imposes a tax on the ride-hailing service and illustrate how the proposed framework can quantify the pros and cons of such policies for different stakeholders.

Rights

Permission to publish the abstract has been given by Elsevier, copyright remains with them.

Comments

Transportation Research Part C Home Page:

http://www.sciencedirect.com/science/journal/0968090X

Share

COinS